ISOLATION AND STRUCTURAL ELUCIDATION OF CUCURBITAXANTHIN A AND B FROM PUMPKIN CUCURBITA MAXIMA

TAKAO MATSUNO, YASUKO TANI, TAKASHI MAOKA, KENJI MATSUO and TADAAKI KOMORI

Department of Natural Products Research, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607, Japan

(Revised received 1 April 1986)

Key Word Index—Cucurbita maxima; Cucurbitaceae; pumpkin; carotenoid; cucurbitaxanthin A; cucurbitaxanthin B.

Abstract—Two new carotenoids, cucurbitaxanthin A [(3S,5R,6R,3'R)-3,6-epoxy-5,6-dihydro- β , β -carotene-5,3'-diol] and cucurbitaxanthin B [(3S,5R,6R,3'S,5'R,6'S)-3,6,5',6'-diepoxy-5,6,5',6'-tetrahydro- β , β -carotene-5,3'-diol] have been isolated from the pumpkin *Cucurbita maxima*.

INTRODUCTION

 β,ε -Carotene, β,β -carotene, lycopene, α -cryptoxanthin, β -cryptoxanthin, lutein, zeaxanthin, lutein-5,6-epoxide, antheraxanthin, violaxanthin and neoxanthin have been reported as the principal carotenoids in the pumpkin [1-4].

In the course of our comparative biochemical studies of carotenoids in plants, we have isolated two new carotenoids, cucurbitaxanthin A (1) and cucurbitaxanthin B (2) from the flesh of the pumpkin Cucurbita maxima. We report in this paper the isolation and structural elucidation of these two new carotenoids.

RESULTS AND DISCUSSION

The following carotenoids were identified: β , β -carotene (16.8% of the total carotenoid), (3R)- β -cryptoxanthin (1.5%), lutein A [(3R,3'R,6'R)-lutein] [5] (26.1%), (3R,3'R)-zeaxanthin (4.1%), (3S,5R,6S,3'R,6'R)-lutein-5,6-epoxide (1.2%), (3S,5R,6S,3'R)-antheraxanthin (2.1%), (3S,5R,6S,3'S,5'R,6'S)-violaxanthin (11.1%) and (3S,5R,6R,3'S,5'R,6'S)-neoxanthin (3.4%).

Cucurbitaxanthin A (1) was isolated as orange needles (yield 2.7 mg from 100 g flesh, 25% of the total carotenoid) and showed mp 175-176°. The molecular ion of 1 (m/z 584.4196) was compatible with $C_{40}H_{56}O_3$. Of the three oxygen functions, one was ascribed to a secondary hydroxyl group and one of the remaining two was attributed to a tertiary hydroxyl group by acetylation, trimethyl silylation and ¹H NMR data (δ 3.9 m, 1H). From the IR spectrum there were no carbonyl, carboxyl, allenic and acetylenic groups. Therefore the third oxygen was ascribed to an epoxide. ¹H NMR spectral assignments for 1 are consistent with the presence of the structural moiety A in the molecule of 1 (Scheme 1). Furthermore, the presence of a 5,6-dihydro-5-hydroxy-3,6-epoxy- β end group (B) in 1 was confirmed by comparison with the 1HNMR and the 13CNMR data of (3S,5R,6R)-5,6-dihydro-5-hydroxy-3,6-epoxy- β -ionol (3) [6, 7] (Schemes 1 and 2). On the basis of the evidence described above, we have assigned the structure 5,6dihydro-3,6-epoxy-β,β-carotene-5,3'-diol to cucurbitaxanthin A (1). Reduction of 1 with LiAlH₄ under forcing conditions provided (3R,3'R)-zeaxanthin (4) (Scheme 1). This result indicated not only the validity of the proposed constitution of 1 but also revealed that 1 possesses 3S,6R and 3'R chiralities in its molecule.

Taking the ¹H NMR and ¹³C NMR data and biosynthetic aspects [6, 7] into the consideration of the structure of cucurbitaxanthin A, the R-configuration is favoured for the hydroxyl at C-5. Thus, the structure of cucurbitaxanthin A has been tentatively postulated to be (3S,5R,6R,3'R)-3,6-epoxy-5,6-dihydro- β , β -carotene-5,3'-diol (1).

Cucurbitaxanthin B (2) was isolated as orange needles (0.8 mg from 100 g flesh, 7.7% of the total carotenoid) and showed mp 181-182°. The mass spectrum revealed a molecular weight of 600.4156 compatible with the formula $C_{40}H_{56}O_4$. The presence of one secondary hydroxyl group and one tertiary hydroxyl group is consistent with the formation of a monoacetate and a di-trimethyl silylether and with the ¹H NMR data (δ 3.9 m, 1 H). A hypsochromic shift of 20 nm by treatment with HCl indicated the presence of a 5,6-epoxy- β end group in the molecule. From the IR spectrum, there were no carbonyl, carboxyl, allenic and acetylenic groups in the molecule. The ¹H NMR signals at δ 0.883, 1.434 and 1.213 showed the presence of a 3,6-epoxy-5,6-dihydro-5-hydroxy- β end group and the signals at $\delta 0.978$, 1.152 and 1.188 confirmed the presence of a 3',6'-cis-3'-hydroxy-5',6'-epoxy- β end group in 2 [8]. Consequently the constitution of cucurbitaxanthin B has been assigned as 3',6'-cis-3,6,5',6'diepoxy-5,6,5',6'-tetrahydro- β , β -carotene-5,3'-diol. In the same manner as for compound 1, reduction of 2 with LiAlH₄ under forcing conditions provided (3R,3'R)zeaxanthin (4). Therefore the chirality of cucurbitaxanthin B has been assigned as 3S,6R,3'S,5'R,6'S. From biosynthetic considerations and the ¹H NMR data the R-configuration is favoured for the hydroxyl group at C-5. On the basis of the evidence described above the structure of cucurbitaxanthin B has been tentatively proposed to be (3S,5R,6R,3'S,5'R,6'S)-3,6,5',6',-diepoxy-5,6,5',6'-tetrahydro- β,β -carotene-5,3'-diol (2) (Scheme 3).

In conclusion, the two new carotenoids, cucurbitaxanthin A (1) and cucurbitaxanthin B (2), possessing a 2838 T. MATSUNO et al.

3 0.898/1.410 OH
$$1.302 d(J = 6.3 \text{Hz})$$
HO

Scheme 1.

novel 5-hydroxy-3,6-oxabicycloheptane ring, have been isolated from the flesh of pumpkin C. maxima.

Naturally occurring carotenoids with a 3,6-oxabicycloheptane ring system, eutreptiellanone, α-cryptoeutreptiellanone and β -cryptoeutreptiellanone, were first isolated from the marine alga Eutreptiella gymnastica [9–11].

EXPERIMENTAL

Extraction and isolation of carotenoids. Carotenoids were extracted with Me₂CO from the flesh of C. maxima (100 g). After transfer to n-hexane-Et₂O (1:1) by adding H₂O, the extracts were evaporated to dryness and saponified with 10% KOH in MeOH at 30° for 12 hr. Individual carotenoids were separated by prep. TLC on silica gel G (0.5 mm). The development solvent used was benzene-EtOAc (3:1).

Spectroscopy. UV-VIS spectra were recorded in Et₂O. Concs were calculated using $E_{1 \text{ cm}}^{1 \text{ \%}} = 2500 \text{ at } \lambda_{\text{max}}$. IR spectra were recorded in KBr discs. Mass spectra were obtained with a Hitachi M-80 instrument with a direct inlet system at 70 eV, 190-210°. ¹HNMR (300 MHz) and ¹³CNMR (75 MHz) spectra were

Scheme 2.

3

recorded with a Varian XL-300 instrument. NMR spectra were recorded in CDCl₃ with TMS as standard. CD spectra were recorded on a Jasco J 500-C spectropolarimeter in EPA (Et₂O-iso-pentane-EtOH, 5:5:2) at 20°.

HPLC. HPLC was carried out on a Waters Model 510 instrument with a Waters Lambda Max Model 481 LC spectrophotometer set at 450 nm. The column used was a 300 × 8 mm i.d. stainless steel column packed with Sumipax OA-2000 (particle size 5 μ m) [12]. The solvent used was n-hexane-CH₂Cl₂-EtOH (48:16:0.6) at a flow rate of 2 ml/min.

Chemical derivatizations. Saponification, acetylation, trimethylsilylation, allylic OH test and epoxyfuranoxide rearrangement were carried out by general procedures [13]. Reduction with LiAlH₄ was carried out in dry Et₂O for 12 hr at 30°.

 β,β -Carotene. R_f 0.98, inseparable from an authentic sample obtained from Taraxacum officinale [14] on co-TLC and co-HPLC; VIS λ_{max} nm: (425), 449, 475; MS m/z (rel. int.): 536 [M]⁺ (100), 444 $[M-92]^+$ (15), 430 $[M-106]^+$ (5).

(3R)- β -Cryptoxanthin. R_f 0.78, inseparable from an authentic sample obtained from T. officinale [14] on co-TLC and co-HPLC; VIS λ_{max} nm: (425), 449, 475; MS m/z (rel. int.): 552 [M] ⁺ (100), 534 $[M-18]^+$ (25), 460 $[M-92]^+$ (5), 446 $[M-106]^-$ (2); CD (EPA) nm (Δε): 224 (-6.0), 236 (0), 245 (+6.0), 260 (0), 280 (-10.0), 350 (+3.0).

Lutein A [(3R,3'R,6'R)-lutein] [5]. R_f 0.40, inseparable from an authentic sample obtained from T. officinale [14] VIS λ_{max} nm: (420), 444 and 472; MS m/z (rel. int.): 568 [M]⁺ (60), 550 [M $-18]^+$ (100), 532 [M $-36]^+$ (50), 476 [M $-92]^+$ (10), 462 [M $-106]^+$ (5); CD (EPA) nm ($\Delta \epsilon$): 220 (+2.0), 245 (+8.0), 275 (0), 285 (-4.5).

(3R,3'R)-Zeaxanthin. R_f 0.38, inseparable from an authentic sample obtained from T, officinale [14] on co-TLC and co-HPLC; VIS λ_{max} nm: (425), 449, 475; MS m/z (rel. int.): 568 [M]⁺ (100), 550 $[M-18]^+$ (80), 532 $[M-36]^+$ (60), 476 $[M-92]^+$ (10), 462 $[M-106]^+$ (15); CD (EPA) nm ($\Delta \epsilon$): 224 (-18.0), 236 (0), 245 (+18.0), 260 (0), 284 (-24.8), 325 (0), 350 (+4.0).

(3S,5R,6S,3'R,6'R)-Lutein-5,6-epoxide. R_f 0.28, inseparable

Scheme 3.

from an authentic sample obtained from *T. officinale* [14] on co-TLC and co-HPLC; VIS $\lambda_{\rm max}$ nm: 416, 439, 469; MS m/z (rel. int.): 584 [M] $^+$ (5), 568 [M - 16] $^+$ (2), 566 [M - 18] $^+$ (10), 504 [M - 80] $^+$ (5), 492 [M - 92] $^+$ (5), 478 [M - 106] $^+$ (5), 221 (36), 181 (27), 91 (100); CD (EPA) nm ($\Delta \varepsilon$): 234 (+ 4.1), 273 (- 0.2), 330 (+ 1.4), 352 (+ 0.4).

(3S,5R,6S,3'R)-Antheraxanthin. R_f 0.28, inseparable from an authentic sample obtained from T. officinale [14] on co-TLC and co-HPLC; VIS λ_{max} nm: 423, 445, 473; MS m/z (rel. int.): 584 [M]⁺ (100), 568 [M - 106]⁺ (50), 566 [M - 18]⁺ (70), 504 [M - 80]⁺ (40), 492 [M - 92]⁺ (19), 478 [M - 106]⁺ (2), CD (EPA) nm ($\Delta \varepsilon$): 208 (0), 238 (+ 10.0), 250 (0), 274 (- 20.4), 310 (0), 333 (+ 3.2).

(3S,5R,6S,3'S,5'R,6'S)-Violaxanthin. R_f 0.19, inseparable from an authentic sample obtained from T. officinale [14] on co-TLC and co-HPLC; VIS λ_{max} nm: 416, 439, 468; MS m/z (rel. int.): 600 [M]⁺ (20), 584 [M - 16]⁺ (5), 582 [M - 18]⁺ (3), 566 [M - 34]⁺ (3), 564 [M - 36]⁺ (2), 500 [M - 100]⁺ (2), 211 (100); CD (EPA) nm (Δe): 225 (0), 230 (+6.1), 240 (0), 267 (-27.6), 310 (0).

(3S,5R,6R,3'S,5'R,6'S)-Neoxanthin. R_f 0.10, inseparable from an authentic sample obtained from T. officinale [14] on co-TLC and co-HPLC; VIS $\lambda_{\rm max}$ nm: 414, 436, 468; MS m/z (rel. int.): 600 [M]⁺ (50), 582 [M - 18]⁺ (10), 520 [M - 80]⁺ (5), 508 [M - 92]⁺ (3), 221 (5), 91 (100); CD (EPA) nm ($\Delta \epsilon$): 219 (0), 225 (-1.8), 243 (-0.7), 265 (-2.8), 293 (-0.6), 311 (-0.8).

Cucurbitaxanthin A (1). R_f 0.50, mp 175–176°; VIS $\lambda_{\rm max}$ nm: 423, 445, 473; IR $\nu_{\rm max}$ cm⁻¹: 3360 (m) (broad), 2900 (s), 2850 (m), 1440 (w), 1379 (w), 1352 (w), 1292 (w), 1238 (w), 1085 (m), 1034 (m), 956 (s), 870 (w), 820 (w), 1 H NMR (300 MHz): δ0.883 s and 1.434 s (3H + 3H, Me-16, Me-17), 1.072 s (6H, Me-16', Me-17'), 1.213 s (3H, Me-18), 1.735 s (3H, Me-18'), 1.967 s (12H, Me-19, Me-20, Me-19', Me-20'), 3.9 m (1H, H-3'), 4.4 m (1H, H-3), 5.74 d (J = 15 Hz, 1H, H-7), 6.1–6.7 m (13H, olefinic). Assignment of the 13 C NMR signals of 1 was consistent with data for (3R,3'R)-zeaxanthin (4) [15] and (3S,5R,6R)-5,6-dihydro-5-hydroxy-3,6-epoxy-β-ionol (3): δ12.84 q (C-19',20'), 21.62 q (C-18'), 25.74 and 32.19 q (C-16, C-17), 28.77 q (C-16'), 30.29 q (C-17'), 31.62 q (C-18), 37.14 s (C-1'), 42.61 t (C-4'), 44.05 s (C-1), 47.80 t (C-2), 48.52 t

(C-4, C-2'), 65.13 d (C-3'), 75.38 d (C-4), 82.52 s (C-5), 91.68 s (C-6), 124.94 d (C-11'), 125.60 d (C-7'), 126.17 s (C-5'), 130.09 d (C-15'), 131.33 d (C-10'), 132.68 d (C-14'), 135.68 s (C-9'), 136.51 s (C-13'), 137.61 s (C-6'), 137.81 d (C-12'), 138.53 d (C-8'); remaining sp^2 C signals not assigned 122.89, 124.85, 131.62, 132.60, 134.78, 134.93, 136.43; MS m/z (rel. int.): 584.4196 cal. 584.4199 for $C_{40}H_{56}O_3$ [M] $^+$ (100), 566 [M - 18] $^+$ (5), 532 [M - 52] $^+$ (5), 492 [M - 92] $^+$ (3), 463 [M - 121] $^+$ (5), 438 [M - 146] $^+$ (2), 347 [M - 237] $^+$ (15), 228 (20), 106 (1); CD (EPA) nm ($\Delta \varepsilon$): 223 (0), 239 (+2.3), 254 (0), 275 (-7.6), 305 (-1.5), 335 (-2.1).

Acetylation of 1 gave a monoacetate (m/z 626) with R_f 0.70. Trimethyl silylation of 1 provided a di-trimethyl silylether (m/z 728) with R_f 0.89.

LiAlH₄ reduction of cucurbitaxanthin A (1). Reduction of 1 (0.5 mg) with LiAlH₄ in dry Et₂O (8 ml) for 12 hr at 30° provided (3R,3'R)-zeaxanthin (4) (0.3 mg).

Compound 4 derived from 1. R_f 0.38, inseparable from authentic sample of 4 obtained from T. officinale [14] on co-TLC and co-HPLC; mp 194–195°; VIS $\lambda_{\rm max}$ nm: (425), 449, 475; MS m/z (rel. int.): 568 [M] + (100), 550 [M – 18] + (80), 532 [M – 36] + (60), 476 [M – 92] + (10), 462 [M – 106] + (10); 1 H NMR (300 MHz): δ 1.072 s (12H, Me-16, Me-17, Me-16', Me-17'), 1.735 s (6H, Me-18, Me-18'), 1.967 s (12H, Me-19, Me-20, Me-19', Me-20'), 2.04 d, d [2H, H-4 (ax), H-4' (ax)], 2.39 d, d [2H, H-4 (eq), H-4' (eq)], 3.9 m (2H, H-3, H-3'), 6.1–6.7 m (14H, olefinic); CD (EPA) nm ($\Delta \varepsilon$): 224 (– 18.0), 236 (0), 245 (+ 18.0), 260 (0), 284 (– 24.8), 325 (0), 350 (+ 4.0).

Cucurbitaxanthin B (2). R_f 0.40, mp 181 -182°; VIS $\lambda_{\rm max}$ nm: 415, 438, 468; IR $v_{\rm max}$ cm $^{-1}$: 3360 (m, broad), 2900 (s), 2850 (m), 1440 (w), 1379 (w), 1352 (w), 1292 (w), 1238 (w), 1085 (m), 1034 (m), 956 (s), 870 (w), 820 (w); $^1{\rm H}$ NMR (300 MHz): δ 0.883 s and 1.434 s (3H + 3H, Me-16, Me-17), 0.978 and 1.152 s (3H + 3H, Me-16', Me-17'), 1.188 s (3H, Me-18'), 1.213 s (3H, Me-18), 1.928 s (3H, Me-19'), 1.950 s (3H, Me-20'), 1.967 s (6H, Me-19, Me-20), 3.90 m (1H, H-3'), 4.38 m (1H, H-3), 5.74 d (J = 15 Hz, 1H, H-7), 5.88 d (J = 15 Hz, 1H, H-7'), 6.15-6.70 m (12H, olefinic), CD (EPA) nm (Δ s): 210 (-6.8), 225 (0), 230 (+3.0), 236 (0), 267 (-19.0), 309 (0), 327 (+2.0), 340 (0); MS m/z (rel. int.): 600.4156 calc. 600.4154 for $C_{40}H_{56}O_4$ [M] $^+$ (44), 582 [M - 18] $^+$ (5), 520

2840 T. MATSUNO et al.

[M -80] $^+$ (20), 508 [M -92] $^+$ (17), 287 (42), 221 (100), 91 (60). The furanoid rearrangement product of 2 showed VIS $\lambda_{\rm max}$ nm; 395, 419, 448. Acetylation of 2 gave a monoacetate (m/z 642) with R_f 0.65. Trimethyl silylation of 2 provided di-trimethyl silylether (m/z 744) with R_f 0.85.

Reduction of cucurbitaxanthin B (2). Compound 2 (0.5 mg) in dry Et₂O (8 ml) at 30° treated with LiAlH₄ for 12 hr provided (3R,3'R)-zeaxanthin (4) (0.3 mg).

Compound 4 derived from 2. R_f 0.38, inseparable from authentic sample of 4 obtained from T. officinale [14]; mp 194–195°; VIS λ_{max} nm: (425), 449, 475; MS m/z (rel. int.): 568 [M]⁺ (100), 550 [M – 18]⁺ (80), 532 [M – 36]⁺ (60), 476 [M – 92]⁺ (10), 462 [M – 106]⁺ (10); ¹H NMR (300 MHz): δ 1.072 s (12H, Me-16, Me-17, Me-16', Me-17'), 1.735 s (6H, Me-18, Me-18'), 1.967 s (12H, Me-19, Me-20, Me-19', Me-20'), 2.04 d, d [2H, H-4 (ax), H-4' (ax)], 2.39 d, d [2H, H-4 (eq), H-4' (eq)], 3.9 m (2H, H-3, H-3'), 6.1–6.7 m (14H, olefinic); CD (EPA) nm ($\Delta \varepsilon$): 224 (-18.0), 236 (0), 245 (+18.0), 260 (0), 284 (-24.8), 325 (0), 350 (+4.0).

(3S,5R,6R)-5,6-Dihydro-5-hydroxy-3,6-epoxy-β-ionol (3).
¹H NMR (300 MHz): δ0.898 s and 1.410 s (3H + 3H, Me-11, Me-12), 1.209 s (3H, Me-13), 1.302 d (3H, Me-10), 4.4 m (2H, H-3, H-9), 5.72 d (1H, H-7), 5.78 d, d (1H, H-8); 13 C NMR (75 MHz): δ23.68 q (C-10), 25.62 q and 32.06 q (C-11, C-12), 31.55 q (C-13), 43.42 s (C-1), 47.69 t (C-2), 48.48 t (C-4), 68.79 d (C-9), 75.36 d (C-3), 82.05 s (C-5), 90.61 s (C-6), 123.60 d (C-8), 134.50 d (C-7).

Acknowledgement—We thank Dr. Takane Fujimori, Central Research Institute, Japan Tobacco Inc., for kindly providing for the sample of synthetic (3S,5R,6R)-5,6-dihydro-5-hydroxy-3,6-epoxy- β -ionol (3).

REFERENCES

- Zechmeister, L., Béres, T. and Ujhelyi, E. (1935) Ber. Dtsch. Chem. Ges. 68, 1321.
- Zechmeister, L. and Tuzson, P. (1934) Naturwissenschaften 19, 307.
- Zabolcs, S. J., Ronai, A. and Tóth, G. (1970) Acta Chem. Acad. Sci. Hung. 66, 229.
- DeMoreas, G. H. K., Brune, W. and Cambraia, J. (1974) Rev. Ceres 21, 63.
- Matsuno, T., Maoka, T., Katsuyama, M., Hirono, T., Ikuno, Y., Shimizu, M. and Komori, T. (1986) Comp. Biochem. Physiol. (in press).
- Takagi, Y., Fujimori, T., Hata, T. and Kaneko, H. (1980) Agric. Biol. Chem. 44, 705.
- Wahlberg, D. I., Nishida, T. and Enzell, C. R. (1979) Acta Chem. Scand. 33B, 701.
- Eugster, C. H. (1982) in Carotenoid Chemistry and Biochemistry (Britton, G. and Goodwin, T. W., eds) p. 107. Pergamon Press, Oxford.
- Fiksdahl, A., Bjørnland, T. and Liaaen-Jensen, S. (1984) Phytochemistry 23, 649.
- 10. Liaaen-Jensen, S. (1985) Pure. Appl. Chem. 57, 649.
- Bjørnland, T., Borch, G. and Liaaen-Jensen, S. (1986) Phytochemistry 25, 201.
- Maoka, T., Komori, T. and Matsuno, T. (1985) J. Chromatogr. 318, 122.
- Matsuno, T., Katsuyama, M., Maoka, T., Hirono, T. and Komori, T. (1985) Comp. Biochem. Physiol. 80B, 779.
- 14. Kleinig, H. and Nietsche, H. (1968) Phytochemistry 7, 1171.
- 15. Moss, G. P. (1976) Pure Appl. Chem. 47, 97.